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Abstract

Although both betweenness and closeness centrality are claimed to be important
for the effectiveness of someone’s network position, it has not been comprehensively
studied which networks emerge if actors strive to optimize their centrality in the
network in terms of betweenness and closeness. We study each of these centrality
measures separately, but we also analyze what happens if actors value betweenness
and closeness simultaneously. Network dynamics differ considerably in a scenario
with either betweenness or closeness incentives compared to a scenario in which
closeness and betweenness incentives are combined. There are not only more sta-
ble networks if actors’ betweenness and closeness are combined, but these stable
networks are also less stylized.

Keywords: Social Networks, Closeness Centrality, Betweenness Centrality, Network For-
mation, Network Dynamics



1 Introduction

Freeman (1979) already realized that to describe the centrality of actors in a network,
one network measure is not sufficient. Even when only considering the communication
activities in a network, it makes sense to distinguish different measures. More specifically,
he distinguished degree centrality for the extent to which an actor is active in the process
of communication in the network, betweenness centrality as the extent to which an actor
is essential to channel information between other actors, and closeness centrality as a
measure of independence of an actor to receive information quickly from any position
in the network. Subsequently, it was realized that central positions in the network can
provide benefits for the actors in these positions, but that depending on the application
different types of central positions are beneficial. E.g., Burt (1992) showed that controlling
information exchange between other actors can be beneficial for promotion within a
firm. Although Burt operationalized control of information using his formalization of
structural holes, betweenness centrality can also be considered as a measure for such a
control of information. In other circumstances, closeness can be more beneficial. E.g., if
information needs to travel along shorter paths, the information is more reliable compared
to information that has to travel along long paths. Therefore, if fast and accurate access of
information is necessary, and especially if network channels are noisy, closeness centrality
will be beneficial.

Given that it is meanwhile acknowledged that certain network positions provide benefits
for actors, it is also realistic that actors consciously choose their relations to optimize their
network positions in an incentive-guided manner (see Flap, 2003). In the last 15 years,
the developments on modeling incentive-based network formation have been tremendous
in sociology but also in economics. The two recent textbooks by Goyal (2007) and
Jackson (2008) are examples for the development in economics. The recent special issue
of Social Networks (see Snijders and Doreian, 2010) provides a broad overview of recent
developments in sociology. We will not review this literature here again, but connect to
the most related studies below.

1.1 Motivation

We add to the theoretical research on network dynamics in three ways. First, although
Freeman (1979) has been arguing already in the late 70s what the beneficial features
are of different central positions in networks, it has not been studied in detail how the
classic centrality measures can drive network formation. This exercise complements the
theory of centrality that originally measures the effect of network positions on individual
opportunities (see, e.g., Wasserman and Faust, 1994), but not the effect of individual
behavior on network structure. If network dynamics show that advantageous network
positions are not stable in a dynamic context, effects of advantageous network positions
on individual opportunities might be smaller than expected. The reason is that the
advantages of the network positions can only be exploited for a short time.

Second, the centrality indices are based on network statistics that are applicable in
many different contexts — from ancient marriages (Padgett and Ansell, 1993) to R&D



collaborations (Walker et al., 1997). Correspondingly, centrality-oriented linking behavior
covers basic types of linking behavior, beyond a single application. One type of linking
behavior is oriented towards access to resources via short paths (closeness). Another type
of linking behavior is oriented towards becoming a mediator or broker by lying between
others (betweenness). By using closeness and betweenness centrality as operationaliza-
tions for these two types of incentives, we deviate from most of the current literature on
strategic network formation. This enables us to compare, e.g., network dynamics based
on betweenness with network dynamics based on structural holes (Buskens and Van de
Rijt, 2008). Studying resemblances and discrepancies does not only serve to assess the
robustness of previous results, but might also be informative for the theoretical distinction
between different measures.

Third, after comparing the dynamics of closeness and betweenness, we analyze the com-
bination of closeness and betweenness incentives to determine network formation. For
contexts in which different types of incentives are salient simultaneously, it would be
misleading to analyze them separately because combing closeness and betweenness incen-
tives leads to qualitatively different network dynamics compared to looking at each of
the incentives separately. So far, there is hardly any research on the interplay between
different types of incentives to predict network formation processes, although it is likely
that multiple incentives are important simultaneously.! E.g., considering the Medici’s
position in the marriage network in Renaissance Florence, Padgett and Ansell (1993)
illustrate that for the trading abilities betweenness played a major role, but for actors
with low betweenness, it was important to be at least close to the other actors.

1.2 Relation to the Literature

In this paper we will introduce a model in which actors strive for closeness and betweenness
(centrality), while links are costly. Several models on strategic network formation resemble
this “centrality model.” The dynamics of intermediation rents in terms of structural holes
is studied by Buskens and Van de Rijt (2008), Goyal and Vega-Redondo (2008), as well
as by Willer (2007) and Kleinberg et al. (2008).? Each of those models uses a different
operationalization of structural holes. And none of the models uses betweenness centrality,
although Burt not only proposes some new measures for brokerage but also employs
betweenness (Burt, 2002). Hummon (2000) and Doreian (2006) study the dynamics of
the “connections model,” originally introduced by Jackson and Wolinsky (1996). Covering
incentives for short paths, the connections model is closely related to closeness incentives
(as examined in a comparison of these two models in Buechel, 2008). Moreover, Fabrikant
et al. (2003) introduce a model where actors’ utility is decreasing with their average path
length (the network statistic on which closeness is based on). This model is adapted to
bilateral link formation and further studied by Corbo and Parkes (2005). Finally, Holme
and Ghoshal (2006) and (2009) study a model (within a different framework, though)
where actors optimize their closeness, while links are costly.

LA first step in this direction is made by Sato (1997) who analyzes a combination of brokerage and
closure for small networks.

2The model of Kleinberg et al. (2008) is less comparable because it studies the unilateral (not the
bilateral) formation of network links.



What has not been done in the literature is to contrast and to combine the dynamics of
“closeness-type” incentives to (with) the dynamics of “betweenness-type” incentives. We
explicitly investigate how the dynamics of closeness differ from the dynamics of between-
ness and examine what happens if both centrality incentives matter simultaneously. To
study which networks emerge for different incentives, we use three complementary tools.
First, we derive general propositions on properties of stable networks using analytic tools.
Second, we enumerate all stable networks with eight or less actors and different relative
weights for closeness and betweenness. Finally, we simulate a dynamic process to estimate
the likelihood of different stable networks in the theoretical conditions that we consider.

As we will show, emerging networks for pure closeness incentives are rarely star networks,
but frequently star-like networks in the sense that they are sparse and connected. Also
the dynamics of pure betweenness lead to a special class of networks (complete bipartite
networks) in most of the settings. For a combination of closeness and betweenness
incentives we observe that there are more and qualitatively different stable networks.

The next section introduces the model and the methods. Section 3 contrasts the closeness
dynamics with betweenness dynamics. Section 4 examines the interaction of closeness and
betweenness dynamics. Section 5 concludes.

2 Model and Methods

2.1 Basic Definitions
2.1.1 Networks and Features of Networks

We consider a finite set of actors N with typical elements i or j and size n > 3. The
bilateral relationships among these actors are modeled as an undirected (and dichotomous)
network. Let G be the set of all those networks and G a typical element. With ij € G we
denote the presence of the link between actors ¢ and 7 in G. Let G U ij be the network
obtained when the link between actors 7 and j is added to network G, while G'\ ij denotes
the network when the link between actors ¢ and j is removed from network G.

A path between two actors i and j is a sequence of distinct actors i1i573...7; such that ¢; = ¢,
ir = j, and djigy € g VI € {1,...,k — 1}. The distance dg(i,j), or simply d(i, j) between
two actors is the length of their shortest path(s), where the length is the number of links
in the sequence.? Neighbors have distance 1; neighbors of neighbors that are not directly
connected are at distance 2; and pairs that cannot reach each other via any number of
other actors are defined to have distance M, a number larger than any possible actual
distance in a network. We work with the conventions A = n and d(i,i) = 0 Vi € N.
Let the diameter of a network be the maximal distance between two connected actors in
the network. A network is called connected if there exists a path between any two actors
in the network. A set of connected actors is called a component if there is no path to
actors outside of this set. A link is called a bridge if its deletion increases the number of

3Below, we introduce notation for properties of actors in a network G omitting G if there is no
confusion about which network is considered.



components in a network.

Let us define some network architectures that will be used throughout the text. In the
complete network K, every possible link is present, while in the empty network, the
complement of the complete network, K, no link is present. A network is a tree if all
links are bridges and the network is connected. If all links are bridges and the network
consists of multiple components, the network is called a forest. A network is complete
bipartite (K, »,) if it can be partitioned into two (non-empty) groups of actors (of sizes
ny and ny) such that no link is present within a group and all links are present across
groups. A special case is the balanced complete bipartite network K, ,, with n = 2n;.
When referring to complete bipartite networks (CB), we assume that there are at least
two actors in each group. If one group consists of one actor, this is called a star network
K -1 (in which one actor is linked to every other actor, while there are no other links).
A circle of size k(> 3) is a sequence of k distinct actors iis...i;, such that 45,7 € G
VI € {1,...,k}, where iy :=i;. A circle network C), is a network with no links besides a
circle of size k = n. Eliminating one link of a circle network leads to a line network P,.

2.1.2 Degree, Closeness, and Betweenness

The degree d¢(i) or simply d(i) of an actor i is the number of links actor 7 has in network
(. An isolate is an actor with d(7) = 0 and a pendant is an actor with d(i) = 1 (the
link to this latter actor is called a loose end). The average degree of a network is defined
as d(G) := + 3. v d(i). Network density is defined as D(G) := %, the average degree
as a proportion of the maximal possible average degree. Degree can be considered as a
measure of centrality (Freeman, 1979). But besides the beneficial aspects of many links,
there are also costs (time, effort, etc.) involved. We assume that the costs of maintaining
relationships are the same for any link independent of the number of links an actor has and
exceed those benefits that are restricted to direct contacts.* This means that maintaining

links is costly.?

The idea of closeness reaches back to the origins of social network analysis. An actor
is considered as “central” in a social network if his distance to other actors is small
(Sabidussi, 1966). Freeman (1979) uses the inverse average distance (of an actor to
all actors in the network) to formalize closeness (%) As argued in Buechel
(2008), it is equally reasonable to operationalize closeness as the reverse average distance
(—W). The advantage of the latter definition is that any change in closeness is
proportional to a change in average distances (as also argued in Valente and Foreman,
1998). Usually closeness is not defined for actors that are not connected via any number
of others. We extend closeness to all undirected networks using M as the distance of
not connected pairs. In this paper, we use the normalized version of the reverse average

distance. Closeness of actor i in network G is in that case equal to

4Without this assumption every actor wants to be directly linked to every other actor, independently
of any other benefits. Alternatively, one could assume increasing marginal costs of links, but we do not
need this more complex cost structure to develop our main point.

5We only consider costs for link maintenance and do not take into account specific costs for creating
or deleting links.
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Ce (i) = 0 for isolates, while C¢(7) = 1 for an actor who is directly connected to all others
in the network. As examined in Buechel (2008), this choice of operationalization (as
opposed to Freeman’s definition) affects the results but does not fundamentally change
them. The reason for this consistency is that in our analysis of closeness the results are
strongly driven by the ordering of closeness centralities in different network positions and
the results are to a lesser extent driven by the precise differences between the centralities.

Betweenness was introduced by Anthonisse (1971) and Freeman (1979) and used in many
studies thereafter (e.g., Song et al., 2007). The betweenness of an actor 7 is proportional to
the number of pairs j and k for whom i lays on the shortest path (also called “geodesic”).
If 7 and k£ have more than one geodesic, the fraction of shortest paths going through 7 is
used. Formally,

Cali) = — > (2)

(n=1)n=2) s i

where g, is the number of geodesics between j and k, and g}k indicates the number of

shortest paths between j and k that go through ¢; the fraction j]—i is replaced by zero,
J

when g¢;, = 0. The constant before the fraction normalizes betweenness to be between
0 (an actor is on no shortest path between two other actors) and 1 (the center in a star

network).

2.2 Utility Function and Actor Behavior

We assume that closeness and betweenness are the benefits derived from the network
structure, while direct links are costly. Let ¢ > 0 be the costs of one link and A € [0, 1] the
relative importance (weight) of betweenness versus closeness benefits. In this “centrality
model” we represent the behavior for any actor ¢ by the following utility function:

wi(G) = (1 — \)Co(i) + ACp () — cd(i). (3)

We analyze the model for all possible parameter combinations, as they represent different
contexts including high costs and low costs for maintaining links as well as pure closeness
incentives (A = 0), pure betweenness (A = 1), and both closeness and betweenness being
important (0 < A < 1).9

In this formulation the utility function is linear in closeness, betweenness, and degree. This
assumption implies that the effect of a change in one centrality measure is independent of

6Instead of setting the slopes (A and 1 — )) in relation to each other, we could also have defined them
independently. Both notations allow us to represent exactly the same behavior and there is no difference
when examining stability (and efficiency). The relative notation can be advantageous for comparative
statics because ¢ then measures the costs in comparison to one unit of benefit.



the level the three centrality measures have. E.g., the costs of a link are independent of the
number of links an actor already has and independent of his closeness and betweenness.
Such a formulation is a very convenient choice, but clearly restricting generality.”

In our model actors have homogeneous preferences. It is an interesting question to ask
how networks evolve when actors differ in their preferences (see, e.g., Galeotti et al., 2006).
But since applications of our model are very different in nature, we put emphasis on the
different contexts that influence everybody’s choice, not on the difference between actors
(as also argued in Burger and Buskens, 2009).

Finally, we assume that actors in our model decide about links myopically. This means
that actors consider the consequences of their actions on the current network structure,
but do not anticipate the potential reactions of others (cf. Jackson and Wolinsky, 1996).

2.3 Methods to Study Emergence

To study which networks are likely to emerge for different incentives under the assumptions
specified above, we employ three complementary methods: formal derivations, enumera-
tion, and simulation. We introduce in this subsection each method while we sometimes
provide a basic result as an illustration. Sections 3 and 4 summarize the results for
different parameters using each method.

2.3.1 Formal Derivations

In order to find the networks that are likely to emerge, the first step is to exclude all
those networks in which individual actors have incentives and possibilities to change the
network. Jackson and Wolinsky (1996) proposed such a stability condition that takes
into account that, typically for social networks, the establishment of a relationship needs
the agreement of both actors involved, while the dissolution can be done unilaterally.
Accordingly, a network G is (pairwise) stable if

(i) Vij € G, uw(GQ) > u;(G\ij) and u;(G) > u;(G\ij) and

To establish stability one typically needs the maximal incentive (change in benefits) of
any actor to sever a link and the maximal incentive (change in benefits) of any two actors
to add a link and compare them to linking costs ¢. Because benefits are based only
on closeness and betweenness, the crucial aspects for a focal actor ¢ are the change in
distances » ;_y d(i,j) (= non-normalized closeness) and the change in the number of

shortest paths he is on Y._, .., 2% (= non-normalized betweenness), what we call
J<k(§#ik#i) gjk
’ ji

his “brokerage.” Plugging in these changes into the utility function above yields the
following condition: if a new link for some actor i in some network G means a decrease

TGoyal and Joshi (2006), De Jaegher and Kamphorst (2008), and Buechel (2008) study models where
the assumption is partially relaxed (by allowing for increasing and decreasing marginal returns).



in distances of X and an increase in brokerage of Y, this actor is willing to form the link

only if
(1= N)[X] A2[Y]
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Although deriving the changes in distances and brokerage for a given situation might be
tedious, it is a straightforward task.

Formal derivations are first of all used to establish the existence of stable networks and
to characterize a significant boundary of the parameters. In particular, the following
proposition specifies for which costs the complete network is uniquely stable. Clearly, for
costs smaller than the derived threshold, no interesting results can be expected.

Proposition 1. In the centrality model there exists at least one stable network for any
parameters (A, c¢) € [0,1] x Ry. Moreover, if ¢ < %, the complete network K, is

uniquely stable.

The proof of all propositions can be found in the appendix. The existence of a stable
network is assured by three simple networks — the complete network, the empty network,
and a star network — of which at least one is stable. The complete network is stable for
c < % When this condition holds with equality, actors are indifferent between
keeping and removing a link with the minimal possible benefits — that is a link that only
serves to reducing the distance to one other actor by the amount of one, while it does not
provide any brokerage. Above the upper bound for the stability of the complete network
there is (possibly) a multitude of stable networks. We explore those networks further in
sections 3 and 4. For sufficiently high ¢, the empty network is uniquely stable, since no
link benefit can justify its costs. The proof of existence is completed by showing that the

star network is stable when the complete and empty network are not stable.

It is straightforward to analyze for which parameter settings a certain network is stable and
not stable (we do this exercise in subsection 4.1 for some prominent networks). Moreover,
the formal derivations are used to characterize the stable networks by properties they
must or must not satisfy.

2.3.2 Enumeration

For small n, one can check the stability for any possible network structure using brute
force computer power. We apply this for n < 8. To provide an overview of the stable
networks that exist, we checked in which range of costs ¢ each network is stable for a fixed
A€ {0,0.1,0.2,...,0.9,1} and using M = n. We call networks “stable for \” if there exists
a cost range with positive support in which the network is stable. By excluding those
networks that are only stable for an infinitely small cost range, i.e. one single cost value,
we do not expect to lose reasonable candidates for the emerging networks, because the
networks would lose their stability due to the smallest perturbations in the cost ¢.® Table 1

8We cannot make the same robustness check for perturbations of A. To run the enumeration, we either
have to fix A and search for ranges of ¢ for a given network, or fix ¢ and search for a ranges of \. We
chose to fix A\, because there are some canonical candidates of A to be analyzed, i.e. A =0and A = 1,
while this is not true for c.



shows how many different stable networks exist fixing A € {0,0.5,1} and combining all
cost levels.?

Table 1: Number of stable networks for a network of size n.

Network size n 5 6 7 8
Stable networks for A = 0 (Closeness) 6 12 21 45
Stable networks for A = 0.5 9 20 45 117
Stable networks for A = 1 (Betweenness) 4

Total number of non-isomorphic networks 34 156 1,044 12,346
Fraction (of stable networks for A =0.5)  26% 13% 4.3% 0.95%

While the total number of non-isomorphic networks explodes with size n, the number of
stable networks increases much more gradually. So our stability notion — despite being a
minimal requirement — can already exclude many networks from being part of a prediction
even without fixing the cost parameter c.

While the enumeration provides a full picture of the candidates for emerging networks,
it does not reveal which networks are most likely the endpoint of a dynamic process in
which, e.g., in any period two actors randomly meet. Each meeting is a possibility for
those actors to change their relationship. We use simulations to elaborate on the expected
structural features of emerging networks for different parameter values in such a dynamic
process.'?.

2.3.3 Simulation

The third method to investigate the emergence of stable networks is a simulation of myopic
improvement dynamics.

To run a simulation, one has to fix both behavioral parameters, weight A and costs ¢ (as
well as the basic settings, n and M). Then, the simulation takes the following steps:

1. Start with some network.

2. Pick a pair of actors {4, j} at random (every pair with equal probability).

3. If ij does not exist, form the link ij if both i and j improve their utility (at least
one strictly); if the link ij exists, sever the link if either ¢ or j improves strictly by
severing it; keep the current status of the link in all other cases.

9With the described procedure, we find all stable networks, except those that are stable for some A
that we did not consider, while they are not stable for all \’s we did consider. This number of networks
is likely to be small because most of the stable networks we find are stable for multiple values of .

10The formal derivations and the enumeration are based on the notion of pairwise stability, which is
conceptually not very restrictive. However, we do not work with stronger notions of stability for three
reasons: a) As the enumeration shows, only a small subset of all networks are pairwise stable. b) We let
the enumeration also check for unilateral stability (Buskens and Van de Rijt, 2008) — which is a stronger
stability concept than pairwise stability — but it turns out that this refinement does not heavily decrease
the number of equilibrium networks in our model. ¢) The simulation partially serves as an equilibrium
selection device and provides itself an indication for the more or less important stable networks



4. Go back to step 2 and repeat the steps for the actual new situation until no pair of
actors wants to change anymore.

So, the procedure starts with one given network and follows a sequence of deviations
towards some stable network (cf. Doreian, 2006, Willer, 2007). Similar simulations can
be found in Hummon (2000) or Buskens and Van de Rijt (2008).

It lies in the nature of such a simulation that one has to choose a few parameter settings
out of a continuum of possibilities. As in the enumeration, we fixed M = n in any
simulation. As parameter setting we chose the weights A = 0,0.1,0.5,0.9,1 and four
cost levels (¢ = wery low,low, medium, high) which will be illustrated in figure 1 by
the dots. The weights include models where closeness and betweenness incentives are
analyzed separately as well as models in which they are combined with different weights
— one balanced model A = 0.5, and cases that check for non-linearities in the dynamic
process when going from a model with only closeness or betweenness to a combined model.
The cost levels are defined according to analytical considerations as follows (in increasing
order): wvery low := ﬁ — €, low = ﬁ — €, med = ﬁ — ¢, and high = ﬁ — €,
where ¢ = 0.001, so, e.g., for n = 5 costs levels are ¢ = 0.024,0.049, 0.099, and 0.199.
The subtraction of ¢ = 0.001 only serves to avoid potential situations in which actors
are indifferent between having or not having a particular link. For A = 1 there was an
additional run for “epsilon costs” ¢ = ¢ = 0.001, that is a cost level sufficiently small
such that any increase in betweenness benefits would justify its costs (for not too high
n). By starting twice (or three times) with each configuration, there are 2(4 -5+ 1) = 42
(respectively 63) runs per starting network.

Figure 1 illustrates the three methods in the parameter space with weight A\ on the
horizontal axis and cost ¢ on the vertical axis. The dots stand for the 21 settings of
the simulation. The enumeration “collects” all stable networks along the vertical lines.
And by formal derivations we find thresholds, e.g. for the uniqueness of the complete
network, which can be represented by regions in the parameter space.

As starting networks for the simulation we took all non-isomorphic networks for network
size n = 3, ...,8 and a sample stratified by density of around 2,500 networks for network
sizes 14 and 20. To give a specific example: For n = 14 we used a sample of 2, 432 starting
networks. Each of them was used for 42 runs. On average it took 137 (median is 56)
iterations to reach a stable network.

The purpose of the simulation is two-fold. First, for small network sizes, for which we
know all stable networks from enumeration, we use the simulation to attach probabilities
of emergence. The second purpose of the simulation is to run computational experiments.
Starting with the same network structures, but using different utility parameters provides
important insight how changes in the utility of actors affect the emerging network struc-
ture. In the following we employ all three methods presented here (formal derivations,
enumeration, and simulation) to answer specific questions about the consequences of
closeness and betweenness incentives on the network dynamics.!

Tn this paper, we selected the most important results to illustrate the difference between various
centrality models. E.g., we only present the enumeration and simulation results for n = 8. Some
additional results that corroborate the main message of the current paper can be found in Buechel
(2009). Further results can also be requested from the authors.

10
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Figure 1: Setting of the parameters for the simulation and the enumeration method.

We argue that each of the three methods has its significant strengths and weaknesses
such that omitting one of them would not lead to a sufficient examination of our model.
Clearly, without formal derivations, enumeration and simulation are black boxes leading
to data which can be described but not generalized. Omitting the enumeration, we do
not get a full picture of the candidates for stable networks. This is an issue, because
the dynamics of the simulation are not only driven by the utility function — the point of
interest — but also by the process of link formation.'? I.e., the rule that a pair of actors
is drawn to revise their relationship might induce different network structures than, e.g.,
the rule that a single actor is drawn who can change the relationship that is most valuable
for him. Finally, without the simulation, we assess a dynamic question (which networks
emerge when...) by only static methods. Moreover, we would not have had numerical
examples for n > 10 such that we might miss important features of emerging networks.

3 Closeness versus Betweenness Incentives

This section first describes the dynamics of closeness incentives and then turns to be-
tweenness dynamics.

3.1 Dynamics of Closeness

For pure closeness incentives (A = 0), actors face a trade-off between short distances and
linking costs. This is equivalent to a linear version of the model introduced in Buechel
(2008) and almost equivalent to the model proposed by Fabrikant et al. (2003) where the

12We thank Ulrik Brandes for pointing out this issue.

11



benefit function is also linearly decreasing with the sum of distances.!® In the original
formulation of the Fabrikant model — analyzed by Corbo and Parkes (2005) for bilateral
network formation — the distance of not connected actors is set to M = oo, while this
assumption is relaxed by Brandes et al. (2008). Corbo and Parkes (2005) identify some
classes of stable networks and also mention the difficulty in finding all stable networks.

Moreover, actors striving for short paths is similar to the utility function of the connections
model, discussed in Jackson and Wolinsky (1996) and Hummon (2000), where the value of
each connected actor decreases with his distance.'* The star network is the predominantly
discussed stable network of the connections model, but besides, different other stable
networks were found (see Hummon, 2000). In Buechel (2008) it is shown that the set of
stable networks of the (symmetric) connections model almost coincides with the set of

stable networks in the model with linear closeness benefits (which is the centrality model
for A = 0).

However, it has not been characterized what the stable networks look like. So the question
remains whether the star or star-like networks are a typical outcome for closeness-type
incentives and which other networks can occur. The star belongs to the family of the
tree networks. Among the trees, the star is the network with the minimal sum of
distances. Therefore, star-like networks can be described as connected, sparse with
short distances. Below we analyze to which extent the stable and emerging networks
for closeness incentives (A = 0) satisfy these three properties.

3.1.1 Formal Derivations

For ¢ < (nil) all stable networks must be connected because the marginal benefit of
linking to an actor in a different component is at least (n-lg(;]\}—u = ﬁ (see Buechel,

2008, Prop. 5.). This threshold is slightly above ¢ = high (so we obtain connected
networks for all cost levels of the simulation when A = 0).

Concerning distances, one can find an upper bound for the diameter in a stable network.'
The following proposition is based on the minimal benefit two actors — who are separated
by a given distance — gain from linking.

Proposition 2. In the centrality model with A = 0, the following holds: The diameter of
a stable network is smaller or equal to p, with p = max{\/4c(n — 1)(M — 1) + 1, 1}.

Let us study the implications of this result in a numerical example: for ¢ = low (=

i =€ & k), the boundary is p = /¢

distance between connected actors that can emerge in a simulation with M = n = 8 is

+ 1. That means that the maximal

13For A = 0 the benefits are just an affine linear transformation of benefits in the Fabrikant model,
while for the costs ¢ anyhow any possible value is considered. As a consequence, the two models lead to
the same sets of stable and efficient networks. However, they do not lead to the same absolute values of
utility, e.g. when computing ratios of the values of different networks, as Corbo and Parkes (2005) do.

Y Consistently, Borgatti and Everett (2006) list the benefits of the connections model among the
“closeness-like” centrality indices.

15The corresponding result is already stated in Fabrikant et al. (2003).
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two and in a simulation with M = n = 14 this is three. For ¢ = medium, the maximal
possible distance is three for size 8 and five for size 14.

The sparsity of stable networks can be shown analytically, too. For each level of ¢, we
find an upper bound for the average degree d(G). We cannot exclude a high degree actor
directly because a star-like position leads to high benefits which can compensate for the
costs. But there is a link between the existence of small circles and the average degree
that we can use to get the following result:

Proposition 3. In the centrality model with A = 0, the following holds: If ¢ > W,
d(G) < %n—i— % for any stable network G and if ¢ > W, d(G) < +/n for any stable
network G.

The first part of the statement does not drastically restrict the candidates for emerging
networks. It restricts the density D(G) of the stable networks not to be higher than
around 60 percent. The second part applies for higher costs, e.g., ¢ = high. It restricts
the stable networks of size 8 to have less than 11 links, networks of size 14 to have less
than 25 links.!®

3.1.2 Enumeration

While the formal derivations provide upper bounds, the enumeration reveals to what
extent the set of all stable networks for closeness incentives satisfies the three properties
of interest (sparsity, connectedness and short distances). Table 2 shows the enumeration
results. The first column describes the properties of all non-isomorphic networks and
serves as a benchmark; the second column contains all stable networks for closeness
incentives.

Table 2: Properties of stable networks for pure closeness incentives A = 0 (enum. n = 8).

all networks stable networks

Number of networks 12,346 45
Number of trees 253 19

 Number of connected networks 11’117 43
Mean number of links 14 9.09

" Mean of AV'DIS 1779 2149
Mean of AV’DIS’C 1.563 1.982

The first two rows of the table show that out of the 12,346 non-isomorphic networks,
only 253 (that is 0.2 percent) networks are trees. While for the set of stable networks
for pure closeness A = 0 there are 19 trees, which makes 42 percent.'” To interpret the
rows in the middle, note that a tree of size 8 is connected with exactly 7 links. The table
shows that, indeed, most stable networks are connected and sparse with an average of 9

16The result on average degree and the result on the diameter get stronger for bigger sizes of the
networks. For n = M = 100 and ¢ = low the diameter is not larger than 9; and ¢ = high restricts the
density to be less than around 10 percent.

"For other weights (A = 0.1,0.2, ..., 1), the fraction of trees is not above 22 percent.
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links per network. The last two rows assess the distances. The average distance, AV'DIS,
measures the distance between any pair of actors in a network (using M = n = 8 for not
connected pairs); AV'DIS’C only considers connected pairs. The set of stable networks
exhibits relatively high distances. While a star has an average distance of 1.75, in the
set of stable networks there are many with higher distances. In fact, only three of the 45
stable networks exhibit a lower average distance than an arbitrarily chosen network. This
is the only aspect of star-like networks that is not clearly matched in the set of stable
networks. The stable networks are sparse and connected, but do not exhibit short average
distances compared to an arbitrary network. Of course, one needs to realize that denser
networks tend to have shorter distances.

The enumeration results (above) do not differentiate by the level of ¢. Analytically, it is
easy to show that trees can only be stable in the range ¢ € [(M_l;(n_l), (nil ] (for A = 0).18
Above this range there are only few stable networks. E.g., using again the enumeration
for n = 8, there are three networks that are stable for higher costs. Those are the empty
network, the circle network and a network consisting of a circle of size 7 plus one isolate.

Let us now analyze which networks emerge within the cost range of trees.

3.1.3 Simulation

We ran a simulation with three settings of ¢ where trees are stable, starting with any
possible network for n = 8. Table 3 shows the frequency with which a tree and specifically
the star network emerges as well as the number of links and average distance of the
emerging networks. The average distance equals the average distance between connected
actors since all the emerging networks must be connected for ¢ < ﬁ

Table 3: Fraction of trees emerging for closeness incentives (sim. n = 8).
low cost medium cost high cost

Stable Networks 12 10 20
i _Tr_ee_s_er}le_rg_;iﬁg_ 1% 11.4% 90.7%
Star emerging 1.0% 0.6% 0.1%
“Number of links 1229 858 7.0
Average distance 1.56 1.90 2.34

The table shows that the star network itself is not a good prediction for the dynamics of
closeness.!” Trees are the dominant structure for high levels of ¢. The 4th row shows the
average number of links for the emerging networks. The emerging networks are sparse,
but become denser when c¢ is reduced.

By drawing all of the frequently emerging networks in this simulation, we made the
following observations: For ¢ = medium, the dominant architecture consists of loose ends
and some links forming a circle of size 4 or 5 (but not smaller). For ¢ = low, we find more
of these circles in the dominant architecture, but there are typically no loose ends.

!8Below that cost range the complete network is uniquely stable as shown in proposition 1; above this
range no network with loose ends can be stable as will be shown in remark 2.

19This result is consistent with the argument of Watts (2001) analyzing the dynamics of the connections
model. In particular, she shows that for a dynamic process like the one we consider here (in the
simulation), the probability that the star network is reached, converges to zero for n going to infinity.
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Summarizing, the expectation that the dynamics of closeness lead to star-like networks
is partially confirmed by the three methods. Stable networks be sparse and must not
contain long distances (formal derivations). Virtually all stable networks are connected
and sparse (enumeration). The star network rarely emerges, although for high costs, the
typical emerging networks are trees (simulation).

3.2 Dynamics of Betweenness

For pure betweenness (A = 1), every actor is striving for brokerage opportunities. This is
similar to three models that are based on Burt’s idea of structural holes. Buskens and Van
de Rijt (2008) find that complete bipartite networks are the most likely outcome of network
dynamics. Willer (2007) finds the circle network as the most likely to emerge, but since
he only considers networks up to size n = 4, the circle network cannot be distinguished
from a balanced complete bipartite network. In the model of Goyal and Vega-Redondo
(2008) actors do not only seek brokerage opportunity, but also derive benefits from the
size of their component and try to avoid being mediated by others. With a strong notion
of stability, they find the star network as most likely outcome. Since in our model for
A = 1 actors only optimize their brokerage benefits, we expect that the dynamics most
closely resemble the results of Buskens and Van de Rijt (2008).

Bipartite networks are characterized by not containing any circle of odd length. Since
this precludes 3-circles, bipartite networks cannot be extremely dense. However, complete
bipartite networks are quite dense and contain only distances of length 1 and 2.

3.2.1 Formal Derivations

Similar to the case of closeness incentives, one can formally restrict the distances of stable
networks by considering what two (distant) actors gain from linking.

Proposition 4. In the centrality model with A = 1, the following holds: (i) Any network
P|_ P
with a diameter of size p(> 4) or larger is not stable if ¢ < % Moreover, (ii) for

sufficiently low ¢, any network with a diameter of three or larger is not stable.

Proposition 4 (ii) shows that, in line with the expectation of complete bipartite networks,
only distances of 1 and 2 occur between connected actors in stable networks. If the stable
networks are complete bipartite, they are also connected and furthermore a pair of actors
at distance 2 is not directly linked since 3-circles are precluded in bipartite networks.
However, formal results on the (non-)existence of circles in stable networks (as well as
results on the average degree of stable networks) are more challenging for betweenness
incentives. To establish which other stable networks exist for small network size, we turn
to the enumeration.

3.2.2 Enumeration

Table 4 shows to which extent the stable networks for A = 1 satisfy the expected properties
of being connected, not containing a 3-circle, and having a diameter of 2.
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Table 4: Properties of stable networks for pure betweenness incentives A = 1 (enum.

all networks stable networks

Number of networks 12,346 37
Number of connected networks 11,117 19
Mean number of links (for connected subset) 14 (14.41) 12.7 (16.16)

" Mean of AV'DISC 1563 1466
Fraction of networks with diameter of 2 38.6% 86.5%

" Mean of fraction of 3-circles ~ 133%  9.0%
Number of networks without any 3-circle 3.3% 54%

First, it is notable that almost 50% of the stable networks are disconnected.?’ This fact
has to be considered when interpreting the other statistics. The mean density for the
stable networks is lower than in an arbitrary network, but this can be explained by the
over-representation of disconnected networks. The last rows of the table show that a
considerable number of stable networks satisfy the requirement of not containing a circle
of length 3 (and that stable networks have fewer 3-circles on average). The middle rows
of the table show that the distances (between connected actors) of the stable networks
are short and, indeed, there are few networks with distances larger than 2.

Those results give a first suggestion that the stable networks resemble complete bipartite
networks. Let us now check how many of the emerging networks really are complete
bipartite when starting with different values of c¢. In our model it can be shown that

any complete bipartite network can only be stable for ¢ < o= Nonetheless, as the
enumeration reveals, there are not many stable networks above tfns range: only 9 out
of 37 stable networks for n = 8. Of the other 28 stable networks, many resemble complete
bipartite networks. Some of them do not belong to this class in a strict sense, e.g., a
network with two isolates and a (4:2)-complete-bipartite component.

3.2.3 Simulation

We ran the simulation for three settings of ¢, where complete bipartite networks might be
stable. Table 5 presents the frequency of emergence for different sets of complete bipartite
networks (with at least two actors in each group). It is notable that for ¢ = low the empty
network emerges in 20.8% of the cases and for costs higher than depicted (¢ = medium
and ¢ = high) the empty network emerges in 99.9% (resp. 94.0 %) of the simulation runs,
while also the circle network is stable. As the table shows, the class of complete bipartite
networks is, indeed, the dominant structure. Moreover, it can be observed that for small
costs ¢, rather the connected ones emerge; for higher costs ¢, rather the ones with the
same group size emerge. The balanced complete bipartite network (which has groups of
the same size and is connected), is the most frequently emerging network.

Summarizing, the expectation that the dynamics of betweenness lead to complete bipartite
networks is confirmed. The stable networks exhibit similar properties, i.e. they are
dense, have short distances, and frequently do not contain 3-circles (formal derivation and

20We will provide an explanation for this observation in subsection 4.4.

16



Table 5: Fraction of complete bipartite networks (CB) emerging (sim. n = 8).

epsilon costs  very low costs low cost

Stable Networks 19 9 4

~ All CBs with or without isolates 40.4% 3%  611%
CBs (2:6, 3:5, 4:4) without isolates 29.0% 38.7% 0.9%
Balanced CBs (4:4, 3:3, 2:2) with or without isolates 13.4% 37.6% 61.1%
Balanced CB (4:4) without isolates 12.5% 25.4% 0.9%

enumeration). The typical emerging structure, besides the empty network, is a complete
bipartite component with possibly some isolates (simulation).

Having characterized the emerging networks for pure closeness incentives and for pure
betweenness incentives, the next question is how those results carry over to a scenario
with combined incentives.

4 Interaction of Closeness and Betweenness Incen-
tives

In this section we let the relative importance of closeness and betweenness vary, i.e.
0<A<L

4.1 Formal Derivations

Let us first have a look at some prominent networks.

e In the empty network K,, adding a link only increases closeness for the actors
involved, while their betweenness remains zero. Therefore, the empty network is
stable if this marginal benefit derived from a change in closeness centrality is smaller
than the linking costs.

e Similarly, in the complete network K, removing a link decreases the closeness of
the actor involved, while his betweenness remains zero.

e Since any link is a bridge in the star network K, i, the dissolution of a link leads
to a substantial reduction of closeness for both actors involved. The addition of a
link does not increase the betweenness and hardly increases the closeness of the two
(peripheral) actors.

e In the circle network C),, an additional link across the circle provides a significant
amount of both closeness and betweenness benefits. Removing a link also reduces
both betweenness as well as closeness for both actors involved. Rather than dis-
solving a link, two actors are willing to form an additional one, across the circle.
Therefore, the circle network can be expected to be stable only for relatively high
linking costs.
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e In the balanced complete bipartite network K, ,,, all actors have some betweenness
as well as high closeness, because distance is at most 2 and each pair that is at
distance 2 is mediated by all the actors in the other group. Adding a link is not
very beneficial in terms of closeness and betweenness, while the loss of removing a
link is a bit larger. Consequently, if links are rather cheap, but not too cheap these
networks can be stable.

These observations lead to proposition 5 presenting the parameter combinations for which
the five prominent network structures are stable.

Proposition 5. In the centrality model the following holds:

1. The complete network K, is stable if and only if ¢ < m

2. The empty network K, is stable if and only if ¢ > 711;_/}

3. A star network Ky ,_ is stable if and only zfijg) < ¢ < min{ 71;“)1‘, HME)(M) 1§n+3]
4. Letn be a multiple of 4. Then a circle network C,, is stable if and only Zf%‘*‘

1-N)[in2—1n] 2)\[ n?—1in+i]

2/\[1n2—3n+1} (
3 <c< (M—1)(n—1) + (n 1)(n 2)

(n=1)(n-2)

5. The balanced complete bipartite network K, », (for even n) is stable if and only if

A 2(1-3) 21— 2]
G = ¢S onmi-n T eenmes)

Figure 2 illustrates proposition 5 depicting the parameter space with weight A\ on the
horizontal axis and cost ¢ on the vertical axis. It indicates the “regions” of the parameter
space where the complete network, the star network, the balanced complete bipartite
network and the circle network are stable.?!’ The empty network is stable above the
dotted line.

The complete network is stable for A < 1 if costs ¢ are low enough. The empty network
is trivially stable for A = 1 and stable for A < 1 if costs are not too low.?? The lower
bound for the star network and the balanced complete bipartite network coincides with
the upper bound for the complete network. The upper bound for the star network is
first increasing and then decreasing in A. We will return to this point in subsection 4.4.
For A = 1, the star network is not stable. Figure 2 indicates that the balanced complete
bipartite network and the circle network, both can be stable for any weight A. While the
circle networks are high cost phenomena, the complete bipartite networks are low cost
phenomena.

The result shows that for the five prominent networks the conditions for stability (lower or
upper bounds of ¢) are linear in A (respectively piecewise linear in A for the star network).

21 Results look different for small network size and slightly different for networks with an odd number
of actors.

22The condition for stability of the complete network of proposition 5 (i) coincides with the condition
for its uniqueness of proposition 1 (setting the inequality strict). This is not true for the empty network:
the threshold for uniqueness is larger (in terms of costs) than the threshold for stability.
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Figure 2: “Parameter map” with stability for some prominent networks.

While three of them can be stable for any A, the star and the complete network are only
stable if A < 1.

We use the enumeration to examine how many other networks are stable for certain \’s.

4.2 Enumeration

By enumeration we can compare all stable networks for different incentives. Figure 3
depicts the number of stable networks for different A’s (for n = 8). The networks are
shaded by the range of A for which they are stable. The first observation is that there
are more stable networks for each level of mixed incentives than for pure incentives (A €
{0,1}). All 45 networks that are stable for closeness incentives (A = 0) are also stable
for some other A. Eight of them are stable for any A (e.g., the empty network); fifteen
are stable for any A, but pure betweenness (like the star or the complete network). For
pure betweenness (A = 1), there are 37 stable networks. Fifteen of them are not stable
for any other A (we used). These networks consist of disconnected components in which
actors want to connect the components as soon as a small amount of closeness incentives
is introduced. Only three networks of the other categories are found stable for only one
weight. The other stable networks for betweenness are typically also stable for any other
A (e.g., the balanced complete bipartite network or the empty network). Thus, there is
strong indication that the stable networks across certain \’s do not differ heavily, except
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for the case of pure incentives. Since most of the stable networks are neither stable for
pure closeness nor for pure betweenness but for mixed incentives, many candidates of
emerging networks are not covered by pure incentives.

Measuring certain properties of the set of stable networks further indicates that pure
incentives are special cases. As an example, figure 4 shows the boxplots of the density
(indicating the mean and the quartiles) for the different sets of stable networks. (A mean
density of 0.4 means that in a particular set of networks (on average) forty percent of all
possible links are present.) While the stable networks for different mixed incentives have a
similar distribution of density, the density of the stable networks for pure closeness (A = 0)
and for pure betweenness incentives (A = 1) differs. Stable networks for betweenness
incentives are denser on average, while variance is larger.
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Figure 3: Number of stable networks by A Figure 4: Distribution of density in
(enum. n = 8). stable networks (enum. n = 8).

We can summarize that introducing a bit of betweenness (closeness) incentives into a pure
closeness (betweenness) model heavily increases the number of stable networks and that
stable networks for mixed incentives do not have the same properties as the stable networks
for pure incentives. In that sense the enumeration reveals that, although the weighting
of benefits in our model is smooth (the benefits are a linear combination of closeness and
betweenness), the results exhibit jumps. Before explaining why such phenomena occur,
let us have a look at the simulation results.

4.3 Simulation

A necessary condition for a network to emerge in a dynamic process (like the simulation
we use) is stability. So the stable networks found in the enumeration (for a certain \)
are now the candidates for emerging networks in the simulation (for this A and different
settings of ¢).

Table 6 presents the simulation results for n = 8. CONNECTED stands for the fraction
of connected networks; LINKS for the number of links (which is proportional to the
density); DEG’'VAR stands for the variance of degree; AV’DIS measures the average
distance (between all pairs) in a network; AV’DIS’C stands for the average distance
between connected actors. Since the simulation starts with any possible network for
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n = 8, the first row stands for the properties of the starting networks, while the values of
the emerging networks can be interpreted as estimations for an arbitrary starting network.

Table 6: Properties of emerging networks (simulation with n = 8).

WEIGHT COSTS CONNECTED LINKS DEG’VAR AV’'DIS AV’DIS’C
All networks 90% 14.0 0.42 1.78 1.56
0 (Closeness)  very low | 100% 280 000 .00  1.00
low 100% 12.3 0.75 1.56 1.56
medium | 100% 8.6 1.04 1.90 1.90
high 100% 7.1 1.05 2.34 2.34
0.1 very low | 100% 28.0 0.00 1.00 1.00
low 100% 12.3 0.76 1.56 1.56
medium | 100% 8.7 1.04 1.88 1.88
high 100% 7.2 1.01 2.30 2.30
0.5 very low | 100% 17.4 0.66 1.38 1.38
low 100% 11.5 1.43 1.61 1.61
medium | 100% 8.4 1.10 1.93 1.93
high 100% 7.2 0.97 2.30 2.30
0.9 very low | 100% 15.1 0.65 1.47 1.47
low 100% 124 1.41 1.64 1.64
medium | 100% 8.1 1.52 2.04 2.02
high 0% 0.4 0.03 7.76 2.00
1 (Betweenness) epsilon | 83% 17.2 1.03 1.69 1.36
very low | 45% 13.2 1.17 2.65 1.41
low 1% 6.5 1.35 5.39 1.42
medium | 0% 0.0 0.00 7.99 1.71
high 0% 0.4 0.03 7.73 2.00

Throughout any weight A, there are some clear-cut relations between the costs of linking
¢ and the properties of the emerging networks. The higher the costs, the lower the density
and the higher the average distances. Higher costs also increase the probability that an
emerging network is disconnected.??

The effects of different incentives, however, are not trivial. Changing the setting from
A =0 to A = 0.1 increases the candidates for emerging networks from 45 to 118 (as found
by enumeration), but the properties of the emerging networks (e.g. LINKS) do not seem
to be heavily affected. For the change from A = 1 to A = 0.9 there is a more drastic
effect, e.g. for the property CONNECTED: The emerging networks for pure betweenness
incentives are frequently disconnected. Besides connectedness, none of the properties is
influenced by the weight A in one specific direction.

4.4 Interplay of Closeness and Betweenness Incentives: Con-
nectedness

In this section we have observed that the interaction between closeness and betweenness
incentives leads to non-trivial dynamics. The enumeration reveals that most of the can-
didates for emerging networks are not found for pure incentives but for mixed incentives.

Z3We did not run simulations for very high costs, where the empty network is expected to emerge in
most cases.
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Moreover, the emerging networks for A = 1 (pure betweenness) substantially differ from
the emerging networks in the other settings. To understand why such phenomena occur
when mixing different incentives, let us analyze the interplay of closeness and betweenness
incentives focusing on one structural feature: connectedness. We first explain why many
of the stable and emerging networks for A = 1 are not connected and then show why
many of the stable networks for A < 1 are not stable for A = 1.

Table 7 shows the number and fraction of stable networks that are connected. One
can observe that most of the stable networks are connected, except for A = 1. Among
the stable networks for A = 1, eighteen are disconnected; for A = 0.9 this reduces to
three (enumeration for n = 8). For many mixed incentives A\ € {0.3,...,0.8} only the
empty network is not connected and stable. Thus, there seems to be an inverse “u-
shaped” relation between the weight A and the number of connected networks: For mixed
incentives, networks are more often connected than for pure incentives.

Table 7: Connectedness of stable networks (enumeration n = 8).
0 01 03 05 07 09 1
Number of connected networks 43 116 118 116 94 65 19
Fraction of connected networks 96% 98% 99% 99% 99% 96% 51%

To form a connected network, the addition of bridges (links connecting two components) is
necessary. An actor who forms a link to the other component can increase his closeness and
his betweenness substantially depending on the sizes of the two components. Consider
two actors ¢ and j in different components of size [ + 1 (respectively r + 1). It can
be shown that in the centrality model actor i gains from a link to j by at least (1 —

1,
A) (TU}E]\;{ (n{l)l)) +A(nil§ra122) .24 The minimal threshold is attained when the r-component
forms a l)ine, because then the marginal closeness for actor ¢ is minimal. Since there is

a strong incentive to establish bridges, ¢ must be very high in order to avoid that two
actors in different components form a link. This is expressed in remark 1.

Remark 1. In the centrality model the following holds: If ¢ < (1 — )\)(Mﬂ/[ﬁ +
)\(n_l)‘lw, the stable networks contain at most one non-trivial component.

From the remark we can conclude that if a stable network is not connected, it usually
consists of isolates (singleton components) in addition to one larger component. In fact,
the enumeration does not yield any stable network with multiple non-trivial components.
Why we rather observe isolates in the stable networks for A = 1 and for A = 0, but not
for mixed incentives, we explain below.

4.4.1 Integration of Isolates

Consider a network GG with an isolated actor ¢ and an actor j who is already part of a
larger group. Then, when closeness only matters (A = 0), actor i has a strong interest in
the link 7, as this link is his first connection to the network (without ij, Cc(i) = 0). Actor

2Interestingly, adding actors (increasing the [ and r) has an additive effect on the change in closeness,
but a multiplicative effect on the change in betweenness of i and j.
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j’s interest is restricted: creating ¢ means being directly connected to z, but does not
have an impact on any other distance (there is no indirect benefit). So for high enough
linking costs ¢, ¢ is willing to link with j, but j rejects this offer. When betweenness
only matters (A = 1), actor j has a high interest in the link ij, because it provides a
substantial amount of betweenness. On the other hand, 7 is not interested in this link as
his betweenness is zero with or without 75. So the link will not be formed. Finally, when
both incentives matter (A € [e,1 — €]), the link can be formed because both actors do
have a rather high interest in this link, but for different reasons: ¢ wants to have access
to the community (closeness incentives); j enjoys mediating ¢ with all his connections
(betweenness incentives).

This example suggests that networks with isolates are rather not stable for mixed incen-
tives because two actors will add a link, while this is not necessarily true for A = 1 and
A = 0. In fact, we have observed that several networks with isolates are stable for A = 1
but not for A < 1 — this is because introducing closeness benefits (A < 1) would justify
also for the isolated actor to add a link.

While the integration of isolates sheds some light on the puzzle why we observe that many
of the stable networks for A = 1 are not stable for A < 1, it does not directly explain why
we observe that many of the stable networks for A < 1 are not stable for A = 1.

4.4.2 Stability of Loose Ends

The integration of an isolate is the complementary action of cutting a link to a pendant
(actor at a loose end). Since cutting a link can be done unilaterally, the stability of a
network with pendants is based on the minimum of two marginal benefits as shown in
remark 2.

Remark 2. In the centrality model the following holds: If ¢ > min{:2; 1=3) Min(;\})__jn%] },

n—1’ (n—

no network with pendants (actors of degree one) is stable.

As can be seen in figure 2, the upper bound for the star network is exactly the boundary
for loose ends. The costs for which no network with pendants can be stable is piecewise
linear in A, increasing first and then decreasing. The argument is the same as before (cf.
the integration of isolates). For pure closeness incentives the neighbor of the pendant has
limited interest in the link. This interest increases with the introduction of betweenness
benefits. When A approaches one, the pendant’s interest in the link diminishes (because
the weight of closeness is decreasing and his marginal betweenness is zero).

For A = 1, this threshold is zero such that no network with pendants can be stable (since
we always assume in our model that ¢ > 0). This excludes, among other networks, all
trees from being stable. Therefore, several stable networks for A < 1 are not stable for
A = 1. Moreover, it need not always be pendants who render many networks unstable.
Generally, for A = 1 many networks fail to be stable because actors do not have any
incentive to keep a link, because the link is not a shortest path between any two other
actors.?” Introducing a bit of closeness benefits can justify keeping these relationships.

25In 75 percent of all non-isomorphic networks (n = 8), some actors are willing to sever a link even for
the smallest costs ¢ = € for pure betweenness A = 1.
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Figure 5: Very frequently emerging network for closeness incentives (sim. n = 8).

Analyzing the interplay of closeness and betweenness incentives provides an example of
why network dynamics of multiple incentives are more complex than the dynamics of each
type of incentives separately. Moreover, it shows another point. Although all actors do
have the same preferences, i.e. the same utility function, the formation of links can be
driven by very different motives, based on different network positions.

5 Concluding Remarks

The innovations of this paper are three-fold. First, although both betweenness and close-
ness centrality are cornerstones of social network analysis, it has hardly been explicitly
studied which networks will emerge if actors follow incentives for these two positional
advantages. We formulate such a model and derive the stable networks for each of the
incentives separately. By also including costs for the number of links, we have covered
degree centrality, the third centrality measure from the classic article by Freeman (1979).
The characterization of the emerging networks can be illustrated by figures 5 and 6
depicting two of the most frequently emerging networks. Typically, the dynamics of
closeness lead to sparse networks, which are connected (trees). In the depicted network,
the closeness centrality of actor 8 is high, while the centrality of all other actors is
moderate. The dynamics of betweenness typically lead to networks with isolates and
a dense component which is bipartite (there are two groups without intragroup links). In
such a network betweenness centrality is zero for the isolates and positive (but not high)
for all actors in the component.?® The distribution of the (betweenness) benefits depends
on the group sizes in the bipartite component. In the depicted network, groups are of
equal size with the implication that betweenness benefits are evenly distributed.

Second, we discuss the relation between our findings and earlier findings on related
models. For closeness, there are some closely related exercises (Fabrikant et al., 2003,
Corbo and Parkes, 2005) and the results of our model are comparable to these earlier
results although none of these earlier studies explored the emerging stable networks using
a combination of formal derivation, enumeration, and computer simulation. The earlier

26Indeed, the network depicted in figure 5 has much higher average betweenness than the network
depicted in figure 6.
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Figure 6: Very frequently emerging network for betweenness incentives (sim. n = 8).

results only provided partial characterizations of stable networks, while we were able to
summarize the complete set of stable networks at least for small network size. Our results
as well relate to studies on the connections model (Jackson and Wolinsky, 1996) because
also in that model actors’ incentives are based on short distances. Although the stable
network predominantly discussed in the literature for the connections model is a star
network, we find that with closeness incentives the star can be stable but is not one of
the frequently emerging networks. The star differs from the typically emerging networks
in our simulations by its short distances and its extreme centralization (benefits in the
star network are higher but less evenly distributed compared to our findings).

Incentives for betweenness are related to models based on structural holes because in both
types of models actors strive to be between other actors. Our results strongly resemble
results also found by Buskens and Van de Rijt (2008) for the dynamics of structural holes,
namely that the frequently emerging networks are complete bipartite networks and, in
particular, the network with equal group sizes emerges frequently. This is less than self-
evident from the outset because structural holes (as defined by Burt, 1992 and used
by Buskens and Van de Rijt, 2008) is only about mediation over short distances while
betweenness also values mediation over long distances. In our study, as well as in Buskens
and Van de Rijt (2008), star networks are not stable or only for very small networks in
contrast to results of Goyal and Vega-Redondo (2008) who find the star as the main stable
network. The reason why Goyal and Vega-Redondo (2008) do not find complete bipartite
networks as stable networks is most likely that in complete bipartite networks (except for
stars) it is the case that everybody is mediating everybody.

Third, and maybe most importantly, there has hardly been any theoretical work that
studies the interplay between different types of incentives to predict network formation
processes. When combining incentives for closeness and betweenness, we find results that
are not straightforward extensions of considering them separately. For a combination
of closeness and betweenness incentives, many networks emerge that do neither emerge
under closeness nor under betweenness incentives. We provide an explanation of this
phenomenon based on the observation that two actors, despite similar preferences, can
have quite different motivations of action. In the particular example of an isolated actor
linking with a well-connected actor, the motivation of the isolated actor is access to the
group (derived from closeness centrality), the motivation of the well-connected actor is
his mediating position (derived from betweenness centrality) between the group and the
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isolated actor.

This last result shows that for understanding the emergence of real world networks, it
can be crucial to consider multiple important network characteristics simultaneously. So
far most theories on network dynamics have studied a single type of incentive, which
mostly resulted in very stylized networks such as stars or complete bipartite networks.
While one suggestion to obtain more realistic networks is to assume that actors have
heterogeneous preferences in networks, our study shows that with multiple incentives,
this assumption is not necessary. The path dependency of the network formation process
leads to different incentives being salient depending on the network position. This thus
provides an alternative for obtaining networks with less stylized or more heterogeneous
network positions to be stable even without starting with actors having heterogeneous
preferences.
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A APPENDIX

A.1 Proofs of section 2

Proposition 1. In the centrality model there exists at least one stable network for any
parameters (A, c¢) € [0,1] x Ry. Moreover, if ¢ < % the complete network K, is
uniquely stable.

Proof of prop. 1. The two statements are independent.

e Existence follows almost directly from proposition 5 of section 4. For A = 1, the

empty network K, is stable at any cost ¢, because a first link does not provide
1-)

any betweennness. For A < 1, the empty network K, is stable if ¢ > 122 =:
n—1

inf(K,), the complete network K, is stable if ¢ < % =: sup(K,,) and the star

network K ,_; is stable if inf(K ,—1) < ¢ < min{sup, (K ,-1),supy (K1 ,-1)}, with
inf(Ky 1) := % sup, (K ,-1) := 22, and supy(Kj,_1) == (1 — \)[+2

(n—1)(M n—17 M-1
2n—3

m] It remains to be shown that if K, and K, are not stable, Kip i is

stable. This follows directly from inf(Ky, 1) = sup(Ky), sup;(Ki, 1) > inf(K,)
as 12 > 122 tand supy (K, 1) > inf(K,) (by definition n > 3 and M > n — 1,

n—1 — n— 1’ M )
n—1)—2n+3
— a1 2 b

which implies

e (a) The complete network is stable if no actor wants to cut a link. For ¢ < %
this is true because the change in distances of cutting a link is 1, while the change
in brokerage is 0. (b) Take any network G € G\ {K,}. 3(7,7) : d(4,)) > 1. By
connecting their closeness increases by at least = 1 So for ¢ < m the
network will be unstable as ¢ and j strictly i 1mprove by zormlng the link.

A.2 Proofs of section 3

Proposition 2. In the centrality model with A = 0, the following holds: The diameter of
a stable network is smaller or equal to p, with p = max{\/4c(n —1)(M — 1) + 1, 1}.

Proof of prop. 2. We show that in a network with a diameter of d > p, there exists a pair
of actors who can increase their utility by forming a link. Take any network G with a
diameter of d > p > 1.2 Let i and j be two actors at maximal distance (d(i, ) = d) and
consider one shortest path between them. By forming the link ij, actor 7 does not only
decrease his distance to j, but also to some actors on this shortest path. Let A(d) stand
for the change in distances stemming from that path. It is easy to derive that

_1p (5)
1+3+5+...+d—3+d—1=3d*, for even d

A(d):{2+3+5+...+d—3+d—1:id2—§,foroddd

2TRecall that the diameter is not M by definition.
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This implies that from network G to network G U ij the closeness of actor i changes by

at least zwd—iﬁ' This also holds for j. It remains to be shown that the marginal

costs ¢ are lower than this marginal benefit. p = /4c(n —1)(M — 1) + 1 implies that

4(]\4’121%. Since p < d, the marginal costs are smaller than the marginal benefit. [

CcC =

Proposition 3. In the centrality model with A = 0, the following holds: If ¢ > W,

d(G) < %n—i— % for any stable network G and if ¢ > W, d(G) < \/n for any stable
network G.

The proof of proposition 3 relies on the following lemma:

Lemma 1. In the centrality model with A = 0, the following holds for ¢ € N with ¢ > 3:

If ¢ > %w, then any network with a circle of size ¢ or smaller is not stable.?®
Proof of Lemma 1. Consider a circle Cy of size ¢, with 3 < ¢ < n. Let N, denote the set
of g actors in the circle and let N_, be the n — ¢ other actors. For a network that contains
this circle G O C, and a link ij € C,, let 9(i, j, G) be the change in closeness for actor
i when link ij is removed from network G, i.e. (i, j,G) := Cc(i)(G) — Ca(i)(G \ ij).
Note that (i, j,G) # ¥(j,i,G) in general. Clearly, G is only stable if ¢(i, j,G) > ¢ for
any ordered pair (7, j) such that ij in C,.

Let ny be the number of actors in N_, who are connected with N, (in network G D C,).
And assume for the moment that ¢ is odd.

_ - _ (=2)+3(@=3)?* . ¢ o .
e Suppose ny = 0. Then ¢(i,7,G) = == = 1 for any pair (i, j) such that ij € C,,.

The derivation is very similar to that of the proof about the diameter in proposition 2.

e Suppose 0 < ny < ¢g. Then ming jy.5ec, ¥(4, 5, G) < 2. If ny = q, it is possible to
increase the change in closeness for any actor by a factor 2, i.e. there is a network with
¥(i,§,G) = 24 for any (i, ) such that ij € C,. To see this let each actor in N, be linked
with exactly one of the nq actors and there are no additional links. In this particular
network, the ny additional actors are equally allocated around the circle. If there is a
pair (i,7) in a network such that (i, j, G) > 21, there must be another pair (i’, ;') with
(i, 7', G) < 21 because in that case the additional actors are concentrated on a particular
side of the circle. If n; < ¢, the increase might even be smaller than 2¢ for all actors on
the circle.

e Similarly, suppose ¢ < n1 < 2¢. Then ming jy.5ec, ¥(i, 5, G) < 31, where the equality
can be obtained if n; = 2¢ and a component of two actors is attached to each actor on
the circle without links between these attached components (and without any other links
between actors in N).

e More generally, suppose n; < zq for some natural number z. Then
ming jy.ijec, Y0, 4,G) < (2 + 1)9, where the equality can be obtained if ny = zq and a
component of z actors is attached to each actor on the circle without additional links.

28By definition of circles, we do not consider “circles” of size 2, 1, or 0.
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e Finally, suppose n; = n —¢. Then ming j).4jcc, ¥(7, 5, G) < (% + 1)y = %z/j If 5 is
a natural number, the condition can hold tightly. (One can construct such a network by
arranging the actors in N_, into ¢ components of size % + 1 and adding exactly one link
from each actor in Cj to exactly one group.) If % is not a natural number, the inequality
still holds true because it implicitly assumes that change in closeness (1 (i, j, G)) can be

distributed equally, which is then not possible.

We have so far established that for any G' © C,, with ¢ odd we have

nlg — 2+ (g — 3)?
(O~ D(n 1) ©)

min (4, 5,G) <

n
(,5):15€Cq q

Y

If ¢ is even, the derivation is analogous and leads to a threshold that is slightly smaller
than ¢. Thus, the statement above also holds in this case. If ¢ > %zﬁ, any network
containing a circle of size ¢ is not stable (since there is an actor i with a neighbor j such
that ¢ > (i, j, G)). Moreover, the expression 1 is increasing in q. Thus, for any network
with a circle smaller than ¢, this is also true. O

Proof of prop. 3. To prove the result, we employ lemma 1 and combine it with the
following theorem (Th. 1.3.4 in Diestel, 2005): Let d(G) = 13",y d(i) be the average
degree and ¢(G) the size of the smallest circle in G, which is defined to be large if there are no
circles. Let § € R and p € N. Then,

1+6>,_,  »=3(6 —1)¥ for p odd
e 25

if [A] d(G) > §(> 2) and [B] ¢(G) > p, then [C]n > ng =
if[A] d(G) = (= 2) and [B] ¢(G) = p, then [C]n = ng {2Ek:0,m,§_1(5_1)k for p even.
We now transform the logical structure of [A] and [B] implies [C] into not[C] and [B]
implies not[A].

To get [B], we fix a certain p, here p = 4,5, and use the proposition that for ¢ >
nlp—2+7(p—3)°]
p(M—1)(n—1)
above). To get not/C], we choose § such that ny = n + 1 (this is possible as ng is a

function of § and p). These conditions together imply not/A], that means that d(G) < 0.

there are no circles of size p or smaller in stable networks (see Lemma 1

We now use this procedure for different values of p: Let p = 4. Then [B] reduces to

c > 716(1\/[_9{‘)(”_1). not[C] is achieved by choosing § = $n + & because it implies that

n=mny—1=-1+23,_,,(6 —1)F =20 — 1. not/A] means that d(G) < . So we get

the result: If ¢ > W, d(G) < sn+ 3.

Let p = 5. Then [B] reduces to ¢ > 5(]\4741%. not[C] is achieved by choosing § = \/n
because it implies that n =mng—1 =09, _,(6 — 1)¥ = 6% not[A] means that d(G) < .

So we get the result: If ¢ > 5(1\4*%%’ d(G) < +/n. O

Proposition 4. In the centrality model with A\ = 1, the following holds: (i) Any network
p|_ p

with a diameter of size p(> 4) or larger is not stable if ¢ < % Moreover, (ii) for

sufficiently low ¢, any network with a diameter of three or larger is not stable.
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Proof of prop. 4. For part (i) we show that in a network with a diameter d, two (con-

di_1y|d
nected) actors at maximal distance increase their benefits at least with % by

establishing a link between them. This implies for ¢ below that level that the network is

unstable. If a network has a larger diameter than d, it also contains two actors at distance
d.

Take any network G with a diameter of d > 4. Let 7 and j be two actors at maximal
distance d(i, j) = d and consider one of their shortest paths. Consider two actors i and
j' on that geodesic such that d(i,i') + d(j, ;') < 4t (i',5' # i, but j' = j is allowed).
It holds that 7 is not on any shortest path between ¢’ and j’. It must also hold that
d(i',j") =d—d(i,i") — d(j,j"). The distance cannot be shorter because this would imply
that there exists a shorter path for : and j to connect. The distance cannot be longer

since there is this path on the geodesic.

Establishing ij adds a new path from i’ to j' (that uses 7). This path is of length d(i, ') +
d(j7,7") +1 =: p(¢',7"). Tt is shorter than their former shortest path, as straightforward
transformations show:

d(i, i) +d(j, ) < dT & di,) +d,7) +1 < d—dii,i') — d(j, ) (7)
e p(,5") <d,j"). (8)

Thus, 2% _ 9% _ 1 _ g _ 1 1y words: actor i increases his brokerage since
> gy ;1 (GUL)) 9,151 (G) 1

he is on all shortest paths between 7' and j' now, which he was not before. In order to

compute the minimal change in brokerage, one can compute the number of pairs whose

distance shortens in dependence of d. The straightforward derivation yields the following

(where x(d) is the number of pairs whose distance shortens coinciding with the change in

brokerage and |x]| stands for 2 rounded to the next lower integer):

X(d) > 1424344+ |5 —1= (5] -5 9)

This implies that from network G to network GUzij the betweenness of actor ¢ increases by
di_1y|d
at least % Since A = 1, the marginal benefits are at least as high as the marginal

costs ¢. The argument holds for both actors 7 and j such that G is not stable.

For part (ii)? assume that for G € G 31,5 : 2 < d(i,j) < M. Let Ng(i) := {k € N : ik €
G}, be the set of neighbors of 7 in network G and similarly Ng(j). By the existence of a
path longer than 2 (between i and j), we know that Ng(i) # 0 and Ng(j) # 0. As this
path is a geodesic, we know that 3k : k € Ng(i) and k & Ng(j); and 31 : [ € Ng(j) and
[ & Ng(i). In fact, Ng(i) N Ng(j) = 0 which implies that d(k,j) > 2. Let G' := G U ij,
be the network when we add the link 75. Then the path kij is a geodesic between k and
j in G'. This generates some betweenness value for i. The same holds for j. As the
marginal costs ¢ are lower than any marginal benefit, we conclude u;(G) < u;(G’) and
u;(G) < u;(G"), which contradicts stability. O

PPart (i) does not count the marginal benefits i derives from pairs (i’ and j') for which the
establishment of ij means an additional shortest path. Those pairs also increase the marginal benefit of
i, but the amount depends on the number of shortest paths. For part (ii) we also consider such pairs.
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A.3 Proofs of section 4

Proposition 5. In the centrality model the following holds:

1. The complete network K, is stable if and only if ¢ < m.

2. The empty network K, is stable if and only if ¢ > n;:}

3. A star network K ,,_ is stable if and only zfijg) <c< min{}%i_)l‘, (= ()T[LME)(M) 1§n+3] .

1 —35n
4. Let n be a multiple of 4. Then a circle network C,, is stable if and only Zflj\\/l+2(nl)+u+
2)\[177,27 n+1] 1

,n}
(n=1)(n—2)

(1-N)[in2— 2A[1n? Lyl
scs (M—l)(n—lz) T e
5. The balanced complete bipartite network Ky, ,, (for even n) is stable if and only if
I ) S 2(1-)) 2\[1-2]
Gy S ¢S onmi-n T eenmey)

Proof of prop. 5. The results of proposition 5 present lower and/or upper bounds of costs
where a network is claimed to be stable. For conciseness, we denote with inf(G) the
claimed lower bound of a network G and analogously the claimed upper bound with
sup(G).

1. The complete network K, can only be altered by deletion of a link. Any actor
deleting any link increases his distances by 1 and does not change his brokerage.
Therefore, no actor will sever a link for ¢ < sup(K,) and every actor wants to sever
a link for higher costs.

2. The empty network K, can only be altered by the addition of links. Any actor
adding a link decreases his distances by M — 1, while his brokerage remains zero.
Thus, no actor will do that for ¢ > inf(K,) and any pair of actors is willing to add
a link for ¢ < inf(K,).

3. In a star network K ,_; only peripheral actors can add links. Any actor adding
a link reduces his distances by 1 and does not change his brokerage. This leads
to the inf(K, ;). The central actor severing a link increases his distances by
M — 1 and decreases his brokerage by n — 2. A peripheral actor cutting a link
increases his distances by M —1+ (n—2)(M —2) and does not change his brokerage.
Plugging into the utility function yields that no actor wants to sever a link for
¢ < min{sup; (K4 »—1);supy (K 1)}, while some actor is willing to sever a link for
higher costs.

4. Any actor severing any link increases his distances from the circle to the line network.
For n even this is a change in distances of inQ — %n and a change in brokerage from
%nZ — %n + % to zero, yielding the upper bound. Two actors forming a link benefit
the further away they are. For n a multiple of four, two actors on opposite sides (i.e.
they have two shortest paths) can form a link building a network with two circles
of odd length. Their change in distances can be derived as 1n? — %n+ 1, while their

5
brokerage changes by n” — 3n 4 1.%

30In the same way slightly different inequalities can be derived for other network sizes.
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5. In complete bipartite networks, additional links are only possible within a group.
Since everybody is already indirectly linked, any actor adding a link reduces his
distances by 1 without changing his brokerage. This yields the inf(K,, ,,). Since
both groups consist of at least two actors (n > 3 and even), cutting one link 75 only
affects the distance between 7 and j. Their distance changes by 2. The brokerage for

n

an actor ¢ changes by (2—1)(%) ! = 1—2, because he was on one of 2 shortest paths

between j and each of the § — 1 actors in the other group. An actor is indifferent
_2
about cutting a link if ¢ = (nfg&éln + (anE(nz]m = sup(Ky, n,). Therefore, for

¢ < inf(K,, »,), two actors form a link; for ¢ > sup(K,, ,,) an actor will sever a
link, and no actor can improve by changing a link for inf(/,, »,) < ¢ < sup(Ky, n,)-

O

Remark 1. In the centrality model the following holds: If ¢ < (1 — )\)Wﬂ/[ﬁ +

)\(n_l)‘lw, the stable networks contain at most one non-trivial component.
Proof of Remark 1. Consider a network with two components of size 2 and an actor ¢ in
one of them. By linking to the other component, actor i's distances decrease by 2M —1—2,
while his brokerage increases by 1 -2. This yields the minimal change in benefits for any
link between two non-trivial components, since components larger than 2 implies stronger
improvements. O

A)

Remark 2. In the centrality model the following holds: If ¢ > min{£2; (1= Min_l)_2n+3] },

no network with pendants (actors of degree one) is stable.

Proof of remark 2. Take any network G with a pendant ¢ and his neighbor 7. We show
that the condition implies that one of the actors wants to sever link 7.

1. Actor ¢ does not reduce brokerage by severing this link. Removing the link increases
his distances at least by M — 1 (when actor j is also a pendant) and at most by

M —1+(n—2)(M —2) (when actor j is directly linked to all other actors). Therefore,
(1=XN)[M(n=1)—2n+3]
(1)

actor ¢ will not keep the link if ¢ >

2. For actor 7, severing the link increases his distances by M — 1 and hence decreases
his closeness by ﬁ Moreover, he was on the shortest path between ¢ and any other
actor in this component. The more actors in this component, the higher the incentive
to keep this link. The maximum brokerage of n — 2 is attained for a connected
network. Therefore, actor j certainly wants to sever the link for ¢ > TIL%’} + %
rendering the network unstable.
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